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On the quantum particle in a polyhedral box 

J W Turner 
Universite Libre de Bruxelles, FacultC des Sciences, C P  231, Campus Plaine, Bvd du 
Triomphe 1050 Bruxelles, Belgium 

Received 24 February 1984 

Abstract. The recently obtained solution of the Schrodinger equation for a particle confined 
to a particular (non-regular) tetrahedral box is rederived directly rather than through a 
transformation of a four-body one-dimensional problem. Its simple form is shown to be 
related to a space-filling property of this particular tetrahedron. The class of all such 
polyhedra is determined. 

1. Introduction 

Among all orthogonal coordinate systems, it is only in the case of confocal surfaces 
of the second degree that the method of separation of variables can be applied to 
solving the eigenvalue problem 

Au + k 2 u  = 0, (1.1) 

A being the n-dimensional Laplacian (Weber 1869). 
Only two cases not involving such a separation of variables have apparently been 

solved, namely when the boundary is an equilateral triangle (Lam6 1852) and quite 
recently, when it is a particular tetrahedron (with Dirichlet boundary conditions) 
(Krishnamurthy et a1 1982). 

In the latter case, the authors recovered LamC's result through an ingenious mapping 
of a one-dimensional three-body problem (hard core fermions on a segment) into a 
one-body problem within a two-dimensional region which turned out to be an equi- 
lateral triangle. The spectrum was shown to be proportional to the quadratic form 
1'- lm + m2, where I ,  m are integers subject to three conditions ( I  # 0, m # 0 and 1 # m )  
which guarantee that the wavefunction, written as a 3 X3 Slater determinant does not 
vanish identically. 

When applied to a similar four-body problem, the mapping leads to a one-body 
problem within a tetrahedron (referred to hereafter as the K tetrahedron) having two 
opposite edges equal to 1 and the remaining four equal to 3"*/2. The spectrum in this 
case is proportional to the quadratic form 312 +3m2 +3n2-21m -2mn -2n1, where the 
three integers 1, m and n are subject to six conditions: 1, m and n all # O  and distinct. 
There are six conditions because the wavefunction is now a 4 X4 Slater determinant 
which vanishes if any pair of rows, of which there are C: = 6 ,  is identical. Thus in 
both cases where no separation of variables is involved, the solution of (1.1) is 
expressible as a $finite sum of the form 

C cj exp(ik; P) 
j 
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Furthermore, whereas the three-body problem leads to the solution of the equilateral 
(i.e. the most symmetrical) triangle case, the four-body problem leads to the solution 
of a non-regular tetrahedral problem. What geometrical properties of the equilateral 
triangle and of the K tetrahedron (not apparently shared by the regular tetrahedron) 
make it possible to solve (1.1) in the form of a finite sum (1.2), and can these results 
be obtained directly rather than through a transformation of a seemingly unrelated 
problem? Do other polygons and polyhedra share this property? 

2. RiemannSchwarz reflexion principle 

The solution of Au + k2u = 0, U E D (a bounded region) and ulsD = 0, can be continued 
beyond D, when its boundary SD contains a line segment, by reflection: let P’ be the 
mirror image with respect to this segment of a point P E  0, and let u ( P ’ )  = -u(P). In 
this way the solution of equation (1.1) inside D is extended into the mirror image D’ 
of D, and a solution E C2 in the combined domain D + D’ is thus obtained (Courant 
1918, Courant and Hilbert 1953). 

If D is a polygon, the solution inside D can be extended around any vertex by 
repeated reflections; but if this solution is expressible inside D as a finite sum (1.2), 
then clearly this sum also represents the solution in the whole plane. Therefore an 
even number of reflections around any given vertex of the polygon must bring it back 
into coincidence with itself. Each angle of the polygon must equal 2 ~ / 2 p ,  p an 
integer 3 2 .  

This necessary condition alone reduces the number of possible cases to four. Firstly 
let D be a triangle and a, = 2 ~ / 2 p ,  (pi 3 2, i = 1,2,3) its angles. As Z l /pi  = 1, the 
only possible values for (pi ,  p 2 ,  p 3 ) ,  to within permutations, are (3,3,3), (2 ,3 ,6)  and 
(2,4,4), i.e. respectively the equilateral triangle, a harmonic of the equilateral triangle, 
and a harmonic of the square. Secondly let D be a quadrilateral; the only solution 
of Z l /p ,  = 2 is pi = p 2  = p3 = p4 = 2, i.e. D is a rectangle. Polygons with a number of 
sides greater than four are excluded. 

It will be shown in the next paragraph that in these cases the solution to equation 
( 1  . l )  with Dirichlet boundary conditions is indeed expressible in the finite form (1.2). 

The same argument can be applied to the three-dimensional case. There must be 
an even number of reflections of the polyhedron, with respect to a face, around any 
edge which brings it into coincidence with itself, and so each dihedral angle ai must 
equal 2 ~ / 2 p , ,  pi an integer 32 .  

Now the dihedral angles of a trihedral angle are subject to strict inequalities: 
377 > 6 ,  + S 2  + 6, > 77, thus Z l /p,  > 1, and therefore for the n dihedral angles of an 
n-hedral angle, Z l /pi  > n -2. This immediately implies that at each vertex exactly 
three edges meet, for should there be more, say n, then the inequality Z l /pi  > n -2, 
pi 3 2, n > 3 cannot be satisfied. 

Consequently all faces of the polyhedron are necessarily triangles or rectangles: 
indeed let 6, be the dihedral angles and ai the opposite face angles at some vertex, 
and recall that cos 6, = (cos ai -cos aj cos ak)/sin aj sin ak, ( i ,  j ,  k a permutation of 
1, 2, 3). Now 0 < Si s 7r/2 and‘0 < a, < 77 ( i  = 1,2,3) imply cos Si 3 0 and sin ai > 0. 
Therefore cos ai 3 cos ai cos ak, and this in turn implies 0 < a, S 77/2. If D has a face 
with n sides, the sum of its face angles will be sn77/2. On the other hand this 
must be ( n  - 2)7r, therefore n = 3 or 4 (and in the latter case each face angle is necessarily 
77/2.) 
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Let E, V and F be respectively the number of edges, vertices and faces of the 
polyhedron D. As 2 E  = 3 V ,  V is necessarily even; it cannot be greater than 8, for 
assume V = 2 v  > 8, then E = 3v > 12, and F = E - V + 2  = U + 2 >  6 .  If there are F3 and 
F4 triangular and rectangular faces, then F3 + F4 = F = v +2 ,  and 3F3 +4F4= 2E = 6v,  
whence F3 = 8 - 2 v  < 0. 

If V = 8, E = 12, F = 6 and F3 = 0, F4 = 6:  D is a rectangular parallelepiped, a case 
completely soluble by separation of variables. 

If V = 6 ,  E = 9, F = 5 and F3 = 2, F4= 3 ;  it is easy to see that the two triangular 
faces cannot be contiguous, so that D is a rectangular prism with triangular base, and 
by separation of variables it follows that this triangle must be one of the three considered 
in the two-dimensional case. 

If V = 4, E = 6 ,  F = 4 and F3 = 4 ;  D is a tetrahedron and this case requires detailed 
analysis: the six dihedral angles are subject to four inequalities of the form X 6, > T.  

They imply that at least two of these angles must be right angles. If there are exactly 
two, they belong to opposite edges. The various inequalities reduce the number of 
possible values for the remaining four dihedrals to a sufficiently small number (eleven) 
for a systematic search to be envisaged: it is found that the only compatible case is 
when the remaining dihedrals are all equal to ~ / 3 ,  which is precisely the case of the 
K tetrahedron. 

If there are three right angle dihedrals, either (i) they belong to concurrent edges 
in which case it turns out that the remaining angles are r/3, r/3 and r / 4 ,  or (ii) if 
not the remaining angles are ~ 1 3 ,  r / 4  and r / 4 .  Both of these tetrahedra are harmonics 
of the K tetrahedron, which has two symmetry planes, one through each long edge 
and the mid-point of the opposite long edge. Each plane splits the K tetrahedron into 
two tetrahedra of type (i). The two together split it into four tetrahedra of type (ii). 

These tetrahedra (i)  and (ii) lead to tessellations not only of the K tetrahedron 
but also of the cube, which requires twelve of type (i)  and twenty four of type (ii); 
this implies that the K tetrahedron and the cube share a common subset of their 
spectrum. Indeed the former with sides { 12, ( i d 3 ) 4 }  has as spectrum 

Akn = r 2 ( 3 1 2  + 3 m 2  + 3 n 2  - 2Im - 2mn -2nI)  

= r2{(-1 + m  + n ) ’ + ( / -  m + n ) 2  + ( I  + m  - n) ’ )  

and the latter (edges equal to 1 )  

A ~ C ~ ~  = r 2 ( p 2  + q2 + r 2 ) ,  

where I, m and n are distinct non-zero integers, and p ,  q and r are non-zero integers. 
As (-1 + m + n )  for example can equal zero, 

{ A k n I c  { A ; q r } .  

Conversely not every choice of p ,  q and r leads to acceptable values for 1, m and n :  

{A 3 {A&). 

However, values of p ,  q and r that do lead to acceptable values for 1, m and n have 
necessarily same parity. If all odd, then for the cube the wavefunction 

where &,j.k is the completely antisymmetric tensor, the sum carries over all permutations 
of ( p ,  q, r )  and the functions U are solutions of equation ( 1  . l )  in one dimension, has 
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nodal planes through the six pairs of opposite edges of the cube and splits into 
twelve tetrahedra of type (i). If p ,  q and r are all even, then there are three additional 
nodal planes through the mid-points of parallel edges, and these planes together with 
the six previous ones split the cube into twenty four tetrahedra of type (ii). 

3. Explicit solution for the equilateral triangle and K tetrahedron 

Let two lines kx + ly + m = 0 and k’x  + l’y + m’ = 0 be mirror images with respect to a 
third line ax + by + c = 0, then 

-- 1 (a’-b’ 
a’+b2 2ab - a 2 + b 2  (3.1) 

For an equilateral triangle ABC, with vertices at A(O,O), B (  1 , O )  and C(4, 4J3), let 

If the solution of equation (1.1)  can be expressed in the form (1.2) and if (i) is a 
direction appearing in the sum, then all directions obtained by multiple reflections 
must also appear. In the case of the equilateral triangle, these reflections generate a 
group of order six: { E  = Ro, R I ,  R2, R3,  R I  R2,  R 2 R I } .  It is simply the symmetry group 
of the equilateral triangle and is isomorphic to the symmetric group of degree three. 

Thus u ( x ,  y ) ,  if it can be expressed in the form (1.2), must be of the form 
5 

u ( x ,  y )  = 1 a, exp 
0 

(3.2) 

Imposing the boundary condition U = 0 on sides AB and AC shows that 
a - - a * - - a f = -  a3  * -  - a4= a5, 
0- I -  

and U = O on side BC leads to three conditions 

exp(iqJ3) -exp[-i(3p - q\/3)/2] = o 
exp(iqJ3) - exp[i(3p + qJ3)/2] = o 
exp[-i(3p +qJ3)/2]-exp[-i(3p - qJ3)/2 = 0. 

These three conditions on p and q turn out to be compatible and are satisfied if 

p = (2r /3) (2r  +s) ,  q = ( 2 r I J 3 ) s  

with r and s integers. In this case therefore the solution can indeed be expressed in 
the form (1.2) and the spectrum is given by 

A,, = p 2 (  r, s) + q2( r, s) = ?r2( r2 + rs + s’), 

which is LamC’s expression. 

write 
To recover the quadratic form as given by Krishnamurthy et a1 (1982) we simply 

r2 + rs + s2 = ( r  + s)2 - ( r  + s)s + s2 = I’ - Im + m2. 
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Now the values of r and s are subject to the following conditions: should the 
direction (,P) be perpendicular to any of the three sides of the triangle, then the line 
will be reflected back upon itself, cancel out and lead to a vanishing wavefunction. 
Thus each scalar product of (g) with ( y ) ,  (*?) must be different from zero. 

Therefore q # 0 and d 3  p + q  # 0, and in terms of r and s 

r # 0, s # 0, r + s # O ,  

so finally 1 and m must be non-zero distinct integers, which are exactly the restrictions 
found by Krishnamurthy et al. 

The above construction is readily extended to the K tetrahedron. Let two planes 
kx + ly + mz + n = 0 and k'x + l'y + m'z + n' = 0 be mirror images with respect to a third 
plane ax + b y  + cz + d = 0. Then 

a 2  i 

2ab 

2ac 2bc 
-a2  + b2 - c2 

1 

For convenience we place the vertices of the tetrahedron at A( 1,0,  -J2),  B ( 2 , 0 , 0 ) ,  
C(0, 0,O) and D( 1 ,  -42,O). The reflection matrices for the four faces are 

0 -LY -a (-A ; ") 
R 3 = R B C D = (  0" -A $ 9  R4 = RACD = (; - a 2  :2) 

= (1: -1: -::), R2 RABC = 
0 0 - 1  

-1 0 0 LY 

LY2 - a 2  

where a = f J 2 .  
Multiple reflections in this case lead to a group of order twenty four which is 

isomorphic to the full symmetry group Td of the regular tetrahedron, and is generated 
by 

Ro= E Rg=341 R I ,  = 12 R18=343 

RI R7= 13 Rl3=24 RI9 = 321 

R2 R8=31 R14=42 R20 = 324 

R3 R9 = 43 RI5 = 213 R2I = 32 

R4 Rlo=34 Rig= 243 R,, = 41 

R ,  = 241 RIl=21 Rl7=313 R23 = 324 1 

where e.g. xyz stands for R,R,R,. 

and Lifshitz 1958) 
With this labelling, the isomorphism with Td is given explicitly as follows (Landau 

R o =  E 

R ,  to R6 wd (six reflections) 

R7 to C3,  C: (eight rotations) 
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RI5 to R20 s4,  s: (six reflection-rotations) 

R2I to R23 C2( =S: )  (three rotations). 

We write 

23 

u(x,  y, z )  = 1 aj exp 
0 

and impose Dirichlet boundary conditions on the three faces passing through C(0, 0,O): 
it turns out that if Ri is a rotation, then ai = a, and if Ri is a reflection or a reflection- 
rotation, then ai = /3 with a = -p * .  The remaining boundary condition on the fourth 
face (ABD) leads to the twelve congruences 

/ O \  

where Rk is any one of the twelve rotations and Rk' = R I  Rk. 
All these congruences are satisfied if 

2 TIT r = -  2aIT 2pIT q = - ,  
2 J 2  2J2' P ' 4 '  

where p, a and T are integers and p +a - T must be even. Consequently the spectrum 
is given by 

A,, = p 2  + q 2  + r 2  = { r 2 ( p 2  + 2 a 2  + 2 ~ ~ ) .  

As in the triangular case, these integers p, a and T are subject to the condition that 

the direction [!] not be perpendicular to any of the planes of the faces of the 

tetrahedron or any of the reflected planes. As filling space through repeated reflections 
of this tetrahedron is equivalent to slicing space with six infinite sets of planes parallel 
respectively to 

h x  - y + z  = 0 

- h x  + y + z  = 0 

h x  +y  + z  = 0 

y = o  J 2 x + y - z = 0  

z = o  

the scalar product of q with any of the following: [:I 

must not vanish. 
In terms of p, U and r this implies 

U Z O ,  rzo,  p - U  $72 0, p + U  - r # 0, 

- p  +a + T #  0, p + U + T # O .  
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To recover the Krishnamurthy form for the spectrum, put 

p = - I  + m + n, U = 1, r = - m  + n. 

Then 

p 2  + 2 0 ' + 2 7 ~  = 3 i 2 + 3 m 2  + 3 n 2 - 2 1 m  - 2 m n  -2n1, 

and the six conditions on p,  U and r yield respectively 

1 # 0, m # n, I #  n, m Z 0 ,  

2797 

l # m ,  n Z 0 .  
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